

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

3.2.0 (2018-09-28)

	Added Secret Management API implementation.

3.1.1 (2018-08-30)

	Fixed missed Credentials default constructor.

3.1.0 (2018-08-16)

	Added Redact API implementation.

3.0.1 (2018-03-05)

	Fixed missed NumberInsight instanciation (#90)

3.0.0 (2018-02-23)

	[BREAKING] Deprioritize support for configuration via configuration files.

	[BREAKING] ApplicationKey must now be the actual private key and not a path to the key.

	Instance-based methods are available to use.

	Support .NET Standard 2.0.

2.3.1 (2017-11-23)

	Set Json serialization DefaultValueHandling to ignore (Voice API defaults no longer required to be explicitly sent)

2.3.0 (2017-11-09)

	[BREAKING] Account.GetBalance returns (instead of a decimal) a Balance object that includes your account balance and other properties.

	[BREAKING] NumberInsight calls, request classes, and response classes have changed slightly. The underlying calls to Nexmo’s API have been updated as well. Thanks to @RabebOthmani for the PR!

	CHANGE: NumberInsightBasicResponse RequestBasic(NumberInsightBasicRequest, …) => NumberInsightBasicResponse RequestBasic(NumberInsightRequest, …)

	CHANGE: NumberInsightStandardResponse RequestStandard(NumberInsightBasicRequest, …) => NumberInsightStandardResponse RequestStandard(NumberInsightRequest, …)

	ADD: NumberInsightAdvancedResponse RequestAdvanced(NumberInsightRequest, …)

	CHANGE: NumberInsightRequestResponse Request(NumberInsightRequest, …) => NumberInsightAsyncRequestResponse RequestAsync(NumberInsightAsyncRequest, …)

	API and documentation refresh: Added missing JSON properties, updated summaries from the official docs.

	Support additional call endpoint types.

	Introduced Nexmo.Api.EnsureSuccessStatusCode configuration option. You may instruct the library to throw an exception if a request results in an unsuccessful HTTP status code.

	Address ShortCode.RequestAlert request bug.

	Expose the configuration ILoggerFactory for use with external logging implementations.

2.2.2 (2017-06-19)

	Updated jose-jwt to 2.3.0 which is reported to address key loading issues.

2.2.1 (2017-03-21)

	Fixed NuGet dependencies; testing shows they are now being correctly included when performing install-package.

2.2.0 (2017-03-10)

	Promoted to release, no changes from rc2.

2.2.0-rc2 (2017-01-12)

	Allow PKCS#8 formatted private keys; auth key parser logging.

2.2.0-rc1 (2017-01-12)

	Expose internal API request methods to allow custom API calls from library consumers as some new Nexmo API endpoints may not be immediately supported.

	Allow override of request credentials per API call.

	Optional configuration and request logging.

	Support signed requests via security key.

	Optional API request rate limiting.

2.1.2 (2016-12-07)

	Look for appsettings.json (netcore webapp convention)

	Ensure XML config parser only looks for keyvalues inside <appSettings> and <connectionStrings> elements.

	Gracefully ignore elements with key attribute but not value attribute.

2.1.1 (2016-12-06)

	Look for <executing process>.exe.config file for XML configuration.

2.1.0 (2016-11-18)

	User-Agent reporting. You may also append an application-specific ID via settings.json.

	[BREAKING] Support web.config XML. This has changed the settings.json structure slightly. Please check the README for details.

2.0.0 (2016-10-24)

	Dependency marking for netstandard1.6

2.0.0-rc2 (2016-10-22)

	Fix JWT generation (key import fail) on OSX/Linux

2.0.0-rc1 (2016-10-16)

	NumberInsight basic + standard support

	NumberVerify control call

	JWT token generation

	Application API support

	Application-based call API support

	.NET Standard 1.6 support

	[BREAKING] Moved configuration from app.config to settings.json

	[BREAKING] Nexmo.Api.Voice static class has been deprecated - you must move to the new Voice calls inside the new Nexmo.Api.Voice namespace. See the Nexmo docs [https://docs.nexmo.com/voice/voice-api] for details.

JWT notes:

	When registering a new application, make sure you save the private key. This library does not (currently) take care of this for you.

	Make sure your saved private key is ASCII (not UTF-8, no BOM) - http://stackoverflow.com/questions/1068650/using-awk-to-remove-the-byte-order-mark

1.0.0 (2016-03-19)

	Initial release with nuget package

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, sex characteristics, gender identity and expression,
level of experience, education, socio-economic status, nationality, personal
appearance, race, religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at devrel@nexmo.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

For answers to common questions about this code of conduct, see
https://www.contributor-covenant.org/faq

Getting Involved

Thanks for your interest in the project, we’d love to have you involved! Check out the sections below to find out more about what to do next…

Opening an Issue

We always welcome issues, if you’ve seen something that isn’t quite right or you have a suggestion for a new feature, please go ahead and open an issue in this project. Include as much information as you have, it really helps.

Making a Code Change

We’re always open to pull requests, but these should be small and clearly described so that we can understand what you’re trying to do. Feel free to open an issue first and get some discussion going.

When you’re ready to start coding, fork this repository to your own GitHub account and make your changes in a new branch. Once you’re happy, open a pull request and explain what the change is and why you think we should include it in our project.

 The MIT License (MIT)

Copyright (c) 2015-2018 Robert Smith

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Nexmo Client Library for C#/.NET

[image: _images/Nexmo.Csharp.Client.svg] [http://www.nuget.org/packages/Nexmo.Csharp.Client]
[image: _images/master.svg]Build status [https://ci.appveyor.com/project/slorello89/nexmo-dotnet/branch/master]
[image: _images/badge.svg]codecov [https://codecov.io/gh/Nexmo/nexmo-dotnet]

[image: Nexmo is now known as Vonage]You can use this C# client library to integrate Nexmo’s APIs to your application. To use this, you’ll
need a Nexmo account. Sign up for free at nexmo.com [https://dashboard.nexmo.com/sign-up?utm_source=DEV_REL&utm_medium=github&utm_campaign=csharp-client-library].

	Installation

	Configuration

	Examples

	Coverage

	Contributing

Installation

To use the client library you’ll need to have created a Nexmo account [https://dashboard.nexmo.com/sign-up?utm_source=DEV_REL&utm_medium=github&utm_campaign=csharp-client-library].

To install the C# client library using NuGet:

	Run the following command in the Package Manager Console:

 Install-Package Nexmo.Csharp.Client

Alternatively:

	Download or build (see developer instructions) the Nexmo.Api.dll.

	If you have downloaded a release, ensure you are referencing the required dependencies by
either including them with your project’s NuGet dependencies or manually referencing them.

	Reference the assembly in your code.

Targeted frameworks

	4.5.2

NOTE: for 4.5.2 frameworks you will need to enable TLS 1.2 either via registry [https://docs.microsoft.com/en-us/dotnet/framework/network-programming/tls#for-net-framework-35---452-and-not-wcf] or by setting it globablly - System.Net.ServicePointManager.SecurityProtocol = System.Net.SecurityProtocolType.Tls12;

	4.6

	.NET Standard 2.0 - supports everything 4.6.1 and above

Configuration:

To setup the configuration of the Nexmo Client you can do one of the following.

	Create a Nexmo Client instance and pass in credentials in the constructor - this will only affect the security credentials (Api Key, Api Secret, Signing Secret, Signing Method Private Key, App Id)

var credentials = Credentials.FromApiKeyAndSecret(
 NEXMO_API_KEY,
 NEXMO_API_SECRET
);

var nexmoClient = new NexmoClient(credentials);

var results = client.SMS.Send(request: new SMS.SMSRequest
var response = nexmoClient.SmsClient.SendAnSms(new Nexmo.Api.Messaging.SendSmsRequest()
{
 To = TO_NUMBER,
 From = NEXMO_BRAND_NAME,
 Text = "A text message sent using the Nexmo SMS API"
});

Or

	Provide the nexmo URLs, API key, secret, and application credentials (for JWT) in appsettings.json:

{
 "appSettings": {
 "Nexmo.UserAgent": "myApp/1.0",
 "Nexmo.Url.Rest": "https://rest.nexmo.com",
 "Nexmo.Url.Api": "https://api.nexmo.com",
 "Nexmo.api_key": "NEXMO-API-KEY",
 "Nexmo.api_secret": "NEXMO-API-SECRET",
 "Nexmo.Application.Id": "ffffffff-ffff-ffff-ffff-ffffffffffff",
 "Nexmo.Application.Key": "NEXMO_APPLICATION_PRIVATE_KEY"
 }
}

Note: In the event multiple configuration files are found, the order of precedence is as follows:

* ```appsettings.json``` which overrides
* ```settings.json```

Or

	Access the Configuration instance and set the appropriate key in your code for example:

Configuration.Instance.Settings["appSettings:Nexmo.Url.Api"] = "https://www.example.com/api";
Configuration.Instance.Settings["appSettings:Nexmo.Url.Rest"] = "https://www.example.com/rest";

NOTE: Private Key is the literal key - not a path to the file containing the key

Configuration Reference

Key | Description
—-|————
Nexmo.api_key | Your API key from the dashboard [https://dashboard.nexmo.com/settings]
Nexmo.api_secret | Your API secret from the dashboard [https://dashboard.nexmo.com/settings]
Nexmo.Application.Id | Your application ID
Nexmo.Application.Key | Your application’s private key
Nexmo.security_secret | Optional. This is the signing secret that’s used for signing SMS [https://developer.nexmo.com/concepts/guides/signing-messages]
Nexmo.signing_method | Optional. This is the method used for signing SMS messages
Nexmo.Url.Rest | Optional. Nexmo REST API base URL. Defaults to https://rest.nexmo.com
Nexmo.Url.Api | Optional. Nexmo API base URL. Defaults to https://api.nexmo.com
Nexmo.Api.RequestsPerSecond | Optional. Throttle to specified requests per second.
Nexmo.UserAgent | Optional. Your app-specific usage identifier in the format of name/version. Example: "myApp/1.0"

Logging

v5.0.0 +

The Library uses Microsoft.Extensions.Logging to preform all of it’s logging tasks. To configure logging for you app simply create a new ILoggerFactory and call the LogProvider.SetLogFactory() method to tell the Nexmo library how to log. For example, to log to the console with serilog you can do the following:

using Microsoft.Extensions.Logging;
using Microsoft.Extensions.Configuration;
using Nexmo.Api.Logger;
using Serilog;

var log = new LoggerConfiguration()
 .MinimumLevel.Debug()
 .WriteTo.Console(outputTemplate: "{Timestamp:HH:mm} [{Level}]: {Message}\n")
 .CreateLogger();
var factory = new LoggerFactory();
factory.AddSerilog(log);
LogProvider.SetLogFactory(factory);

[3.1.x, 5.0.0)

The library makes use of LibLog [https://github.com/damianh/LibLog/wiki] to facilitate logging.

Your application controls if and how logging occurs. Example using Serilog [https://serilog.net/] and Serilog.Sinks.Console [https://www.nuget.org/packages/Serilog.Sinks.Console] v3.x:

using Nexmo.Api.Request;
using Serilog;

// set up logging at startup
var log = new LoggerConfiguration()
 .MinimumLevel.Debug()
 .WriteTo.Console(outputTemplate: "{Timestamp:HH:mm} [{Level}] ({Name:l}) {Message}")
 .CreateLogger();
Log.Logger = log;

Log.Logger.Debug("start");
var client = new Nexmo.Api.Client(new Credentials("example", "password"));
client.Account.GetBalance();
Log.Logger.Debug("end");

2.2.0 - 3.0.x

You can request console logging by placing a logging.json file alongside your appsettings.json configuration.

Note that logging Nexmo.Api messages will very likely expose your key and secret to the console as they can be part of the query string.

Example logging.json contents that would log all requests as well as major configuration and authentication errors:

{
 "IncludeScopes": "true",
 "LogLevel": {
 "Default": "Debug",
 "Nexmo.Api": "Debug",
 "Nexmo.Api.Authentication": "Error",
 "Nexmo.Api.Configuration": "Error"
 }
}

You may specify other types of logging (file, etc.). The Nexmo.Samples.Coverage project contains an example that logs to a file with the assistance of Serilog.Extensions.Logging.File.

Examples

We are working on a separate repository for .NET examples. Check it out here! [https://github.com/nexmo-community/nexmo-dotnet-quickstart]

The following examples show how to:

	Send a message

	Receive a message

	Receive a message delivery receipt

	Redact a message

	Initiate a call

	Receive a call

	Send 2FA code

	Check 2FA code

Sending a Message

Use Nexmo’s SMS API [https://developer.nexmo.com/api/sms?utm_source=DEV_REL&utm_medium=github&utm_campaign=csharp-client-library] to send an SMS message.

var credentials = Credentials.FromApiKeyAndSecret(
 NEXMO_API_KEY,
 NEXMO_API_SECRET
);

var nexmoClient = new NexmoClient(credentials);

var response = nexmoClient.SmsClient.SendAnSms(new Nexmo.Api.Messaging.SendSmsRequest()
{
 To = TO_NUMBER,
 From = NEXMO_BRAND_NAME,
 Text = "A text message sent using the Nexmo SMS API"
});

Receiving a Message

Use Nexmo’s SMS API [https://developer.nexmo.com/api/sms?utm_source=DEV_REL&utm_medium=github&utm_campaign=csharp-client-library] to receive an SMS message. Assumes your Nexmo endpoint is configured.

The best method for receiving an SMS will vary depending on whether you configure your webhooks to be GET or POST. Will Also Vary between ASP.NET MVC and ASP.NET MVC Core.

ASP.NET MVC Core

GET

[HttpGet("webhooks/inbound-sms")]
public async Task<IActionResult> InboundSmsGet()
{
 var inbound = Nexmo.Api.Utility.WebhookParser.ParseQuery<InboundSms>(Request.Query);
 return NoContent();
}

POST

[HttpPost("webhooks/inbound-sms")]
public async Task<IActionResult> InboundSms()
{
 var inbound = await Nexmo.Api.Utility.WebhookParser.ParseWebhookAsync<InboundSms>(Request.Body, Request.ContentType);
 return NoContent();
}

ASP.NET MVC

GET

[HttpGet]
[Route("webhooks/inbound-sms")]
public async Task<HttpResponseMessage> GetInbound()
{
 var inboundSms = WebhookParser.ParseQueryNameValuePairs<InboundSms>(Request.GetQueryNameValuePairs());
 return new HttpResponseMessage(HttpStatusCode.NoContent);
}

POST

[HttpPost]
[Route("webhooks/inbound-sms")]
public async Task<HttpResponseMessage> PostInbound()
{
 var inboundSms = WebhookParser.ParseWebhook<InboundSms>(Request);
 return new HttpResponseMessage(HttpStatusCode.NoContent);
}

Receiving a Message Delivery Receipt

Use Nexmo’s SMS API [https://developer.nexmo.com/api/sms?utm_source=DEV_REL&utm_medium=github&utm_campaign=csharp-client-library] to receive an SMS delivery receipt. Assumes your Nexmo endpoint is configured.

The best method for receiving an SMS will vary depending on whether you configure your webhooks to be GET or POST. Will Also Vary between ASP.NET MVC and ASP.NET MVC Core.

ASP.NET MVC Core

GET

[HttpGet("webhooks/dlr")]
public async Task<IActionResult> InboundSmsGet()
{
 var dlr = Nexmo.Api.Utility.WebhookParser.ParseQuery<DeliveryReceipt>(Request.Query);
 return NoContent();
}

POST

[HttpPost("webhooks/dlr")]
public async Task<IActionResult> InboundSms()
{
 var dlr = await Nexmo.Api.Utility.WebhookParser.ParseWebhookAsync<DeliveryReceipt>(Request.Body, Request.ContentType);
 return NoContent();
}

ASP.NET MVC

GET

[HttpGet]
[Route("webhooks/dlr")]
public async Task<HttpResponseMessage> GetInbound()
{
 var dlr = WebhookParser.ParseQueryNameValuePairs<DeliveryReceipt>(Request.GetQueryNameValuePairs());
 return new HttpResponseMessage(HttpStatusCode.NoContent);
}

POST

[HttpPost]
[Route("webhooks/dlr")]
public async Task<HttpResponseMessage> PostInbound()
{
 var dlr = WebhookParser.ParseWebhook<DeliveryReceipt>(Request);
 return new HttpResponseMessage(HttpStatusCode.NoContent);
}

Redacting a message

Use Nexmo’s Redact API [https://developer.nexmo.com/api/redact?utm_source=DEV_REL&utm_medium=github&utm_campaign=csharp-client-library] to redact a SMS message.

var credentials = Credentials.FromApiKeyAndSecret(NEXMO_API_KEY, NEXMO_API_SECRET);
var client = new NexmoClient(credentials);
var request = new RedactRequest() { Id = NEXMO_REDACT_ID, Type = NEXMO_REDACT_TYPE, Product = NEXMO_REDACT_PRODUCT };
var response = client.RedactClient.Redact(request);

Initiating a Call

Use Nexmo’s Voice API [https://developer.nexmo.com/voice/voice-api/overview?utm_source=DEV_REL&utm_medium=github&utm_campaign=csharp-client-library] to initiate a voice call.

NOTE: You must have a valid Application ID and private key in order to make voice calls. Use either Nexmo.Api.Application or Nexmo’s Node.js-based CLI tool [https://github.com/nexmo/nexmo-cli] to register. See the Application API [https://developer.nexmo.com/concepts/guides/applications?utm_source=DEV_REL&utm_medium=github&utm_campaign=csharp-client-library] documentation for details.

var creds = Credentials.FromAppIdAndPrivateKeyPath(NEXMO_APPLICATION_ID, NEXMO_PRIVATE_KEY_PATH);
var client = new NexmoClient(creds);

var command = new CallCommand() { To = new Endpoint[] { toEndpoint }, From = fromEndpoint, AnswerUrl=new[] { ANSWER_URL}};
var response = client.VoiceClient.CreateCall(command);

Receiving a Call

Use Nexmo’s Voice API [https://developer.nexmo.com/voice/voice-api/overview?utm_source=DEV_REL&utm_medium=github&utm_campaign=csharp-client-library] to receive a voice call.

[HttpGet("webhooks/answer")]
public string Answer()
{
 var talkAction = new TalkAction()
 {
 Text = $"Thank you for calling from " +
 $"{string.Join(" ", Request.Query["from"].ToString().ToCharArray())}"
 };
 var ncco = new Ncco(talkAction);
 return ncco.ToString();
}

Get Details About a Call

var credentials = Credentials.FromAppIdAndPrivateKeyPath(NEXMO_APPLICATION_ID, NEXMO_PRIVATE_KEY_PATH);
var client = new NexmoClient(credentials);

var response = client.VoiceClient.GetCall(UUID);

Sending 2FA Code

Use Nexmo’s Verify API [https://developer.nexmo.com/verify/overview?utm_source=DEV_REL&utm_medium=github&utm_campaign=csharp-client-library] to send 2FA pin code.

var credentials = Credentials.FromApiKeyAndSecret(NEXMO_API_KEY, NEXMO_API_SECRET);
var client = new NexmoClient(credentials);

var request = new VerifyRequest() { Brand = BRAND_NAME, Number = RECIPIENT_NUMBER };
var response = client.VerifyClient.VerifyRequest(request);

Checking 2FA Code

Use Nexmo’s Verify API [https://developer.nexmo.com/verify/overview?utm_source=DEV_REL&utm_medium=github&utm_campaign=csharp-client-library] to check 2FA pin code.

var credentials = Credentials.FromApiKeyAndSecret(NEXMO_API_KEY, NEXMO_API_SECRET);
var client = new NexmoClient(credentials);

var request = new VerifyCheckRequest() { Code = CODE, RequestId = REQUEST_ID };
var response = client.VerifyClient.VerifyCheck(request);

Additional Examples

	Check out the sample MVC application and tests for more examples.
Make sure to copy appsettings.json.example to appsettings.json and enter your key/secret.

API Coverage

	Account

	[X] Balance

	[X] Pricing

	[X] Settings

	[X] Top Up

	[X] Numbers

	[X] Search

	[X] Buy

	[X] Cancel

	[X] Update

	Number Insight

	[X] Basic

	[X] Standard

	[X] Advanced

	[X] Webhook Notification

	Verify

	[X] Verify

	[X] Check

	[X] Search

	[X] Control

	Search

	[X] Message

	[X] Messages

	[X] Rejections

	Messaging

	[X] Send

	[X] Delivery Receipt

	[X] Inbound Messages

	[X] Search

	[X] Message

	[X] Messages

	[X] Rejections

	US Short Codes

	[X] Two-Factor Authentication

	[X] Event Based Alerts

	[X] Sending Alerts

	[X] Campaign Subscription Management

	Application

	[X] Create

	[X] List

	[X] Update

	[X] Delete

	Call

	[X] Outbound

	[X] Get

	[X] List

	[X] Edit

	[X] TTS

	[X] Stream

	[X] DTMF

Contributing

Visual Studio 2017 is required (Community is fine). v15.5+ is recommended.

	Get the latest code either by cloning the repository or downloading a snapshot of the source.

	Open “Nexmo.Api.sln”

	Build! NuGet dependencies should be brought down automatically; check your settings if they are not.

Pull requests are welcome!

Thanks

Special thanks to our contributors:

	jdpearce [https://github.com/jdpearce]

	jonferreira [https://github.com/jonferreira]

	fauna5 [https://github.com/fauna5]

	taylus [https://github.com/taylus]

License

This library is released under the MIT License.

 Thank you for making this library better by submitting an issue. To ensure we can troubleshoot effectively,
please fill out this form in its entirety.

If you are submitting a feature request you may ignore this template and enter a free-form description of your request.
You may also contact the maintainers directly via the Nexmo Slack to discuss the feature.

General description of the issue or question

(Please be as descriptive as possible. If this is a general Nexmo question (billing, usage, etc.) you
will receive a better experience by either filing a support request [https://help.nexmo.com/hc/en-us/requests/new]
directly to Nexmo or asking in the Nexmo Slack [https://developer.nexmo.com/community/slack].)

Which target framework(s) of .NET can you reproduce this issue against?

(Examples: .NET Core 2.0, netcoreapp1.0, .NET Framework 4.6.2, etc.)

What operating system(s) is exhibiting this issue?

Version or commit hash

Which version(s) of CSharp.Nexmo.Client did you encounter this issue?

Expected Behavior

What should have happened?

Actual Behavior

What actually happened?

Steps to Reproduce

Please provide a code snippet or steps to reproduce the issue.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/up.png

_static/plus.png

